Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Parasitol ; 69(1): 628-638, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38294710

RESUMO

INTRODUCTION: Fumaria has been traditionally used to treat skin damages due to anti-inflammatory properties. In the present study, we evaluated the effect of the ethanolic extract of Fumaria parviflora Lam. (F. parviflora) against Leishmania major (L. major) using chitosan biopolymer drug delivery system both In vitro and In vivo models. MATERIALS AND METHODS: The ethanolic extract of F. parviflora was analyzed by HPLC to determine its active ingredients content. The extract was then loaded on chitosan nanoparticles (CNPs). The parasite was treated with various concentrations of the ethanolic extract, CNPs and CNPs loaded with F. parviflora extract (CNPs@ F. parviflora). The size of lesions of treated mice were measured on a weekly basis. The parasite burden was evaluated 8 weeks after treatment. RESULTS: The HPLC analysis showed the presence of Fumaric acid at a high concentration. The percentage of the drug released from CNPs@ F. parviflora within 24 and 72 h were 65% and 90% respectively. The results showed that F. parviflora extract and CNPs@ F. parviflora caused 84% and 96% growth inhibition of L. major promastigotes as revealed by Neubauer chamber counting and MTT test respectively. The IC50 values of F. parviflora extract and CNPs@ F. parviflora were 450 and 68.4 µg/ml respectively. In amastigote assay, the best results showed in CNPs@ F. parviflora that only 2% of macrophages were infected with amastigotes. In vivo experiments for mice treated with F. parviflora and CNPs @ F. parviflora in comparison to control group showed a significant reduction (P < 0.05) in the mean diameter of the lesions (2.3 and 1.72 mm and 9.91 mm respectively). CONCLUSION: The ethanolic extract of F. parviflora both as standalone and loaded in CNPs showed promising inhibitory effects against L. major both upon In vitro and In vivo experimentation as well as therapeutic effects for wound healing in infected mice.


Assuntos
Quitosana , Fumaria , Leishmania major , Leishmaniose Cutânea , Nanopartículas , Extratos Vegetais , Animais , Leishmania major/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Camundongos , Leishmaniose Cutânea/tratamento farmacológico , Fumaria/química , Camundongos Endogâmicos BALB C , Feminino , Antiprotozoários/farmacologia , Antiprotozoários/química , Etanol/química
2.
Acta Parasitol ; 67(1): 143-152, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34173967

RESUMO

PURPOSE: Today, the use of natural products and nanostructures has increased. Given the reports on beneficial effects of various organotellurane compounds on types of visceral leishmaniasis, we decided to investigate the effect of TeO2 NPs on Leishmania major (L. major). Tellurium can cause cell apoptosis in cancer cells without activating the caspase-pathway. METHODS: TeO2 NPs at first synthesized and the structure was checked by XRD, SEM and EDS tests. The cytotoxic effect of TeO2 NPs against L. major promastigotes, amastigotes and macrophages was assessed by MTT test or counting. The possible apoptosis of L. major by TeO2 NPs was evaluated by flow cytometry test. For in vivo assay, the lesions of infected BALB/c mice with L. major promastigotes were treated with TeO2 NPs, then the lesion size and survival rate were evaluated. RESULTS: The synthesis of TeO2 with tetragonal structure was confirmed by XRD. The combination of nanorods and nanoflakes and the presence of Te were proven by SEM and EDS, respectively. According the effects of nanoparticle on promastigotes and amastigotes, the IC50 values of TeO2 after 72 h of incubation were 15.13 and 52.22 µg/ml, respectively. TeO2 NPs induced apoptosis in about 41% of promastigotes. The ulcer greatly healed and survival rate was higher in treated mice compared to those in control group. CONCLUSION: Based on the data, favorable anti-leishmanial properties were observed by using TeO2 NPs. TeO2 NPs have cytotoxic impacts on L. major promastigotes and amastigotes in vitro and in vivo and may be regarded as a therapy option.


Assuntos
Antiprotozoários , Leishmania major , Nanotubos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Óxidos/farmacologia , Telúrio/farmacologia
3.
Int J Biol Macromol ; 192: 72-81, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606792

RESUMO

The conjugation of monoclonal antibodies with superparamagnetic iron oxide nanoparticles (SPIONs) has appeared as a potential multifunctional clinical tool, which can effectively diagnose cancers and monitor their treatment, specifically. Despite the presence of different methods for conjugating antibodies to iron oxide nanoparticles, novel cost-effective and simpler conjugation techniques should be performed in this regard. In current study, an anti-CD3 monoclonal antibody was conjugated to the Fe3O4 coated by carboxymethyl dextran (CMD) using cyanogen bromide (CNBr). Moreover, EDC/NHS techniques were applied as a positive control. The experimental results showed that the Conjugation was performed and the presence of the antibody conjugated to the MNPs in human xenograft tumors was confirmed using Prussian blue (PB) staining, following magnetic resonance imaging (MRI), 30 min after injection. This conjugation method was shown to be able to separate CD3+ T lymphocytes efficiently from whole blood with high purity. Accordingly, this type of bio-conjugation method can be utilized in the future for cell sorting, and can be applied for adopted cell therapies such as CAR-T cell (Chimeric antigen receptor T cell) therapy, as well as targeted MRI imaging.


Assuntos
Anticorpos Monoclonais , Brometo de Cianogênio , Imunoconjugados/química , Nanopartículas de Magnetita , Nanomedicina Teranóstica , Animais , Anticorpos Monoclonais/química , Complexo CD3/antagonistas & inibidores , Linhagem Celular Tumoral , Brometo de Cianogênio/química , Citometria de Fluxo , Humanos , Imunoconjugados/farmacologia , Leucócitos Mononucleares , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Masculino , Camundongos , Técnicas de Diagnóstico Molecular , Imagem Molecular/métodos , Análise Espectral , Nanomedicina Teranóstica/métodos
4.
PLoS One ; 16(8): e0255571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407085

RESUMO

INTRODUCTION: Leishmaniasis is a major public health problem that causes by parasite of the genus Leishmania. The pentavalent antimonial compounds that used for treatment are not safe or effective enough. The aim of the present study was preparation and evaluation of the efficacy of green synthesized silver nanoparticles against Leishmania major (L. major) in vitro. METHODS: To synthesis silver (Ag) nanoparticles (NPs), ginger extract was added to the 0.2mM AgNO3 aqueous solution (1:20). Effects of different concentrations of Ag-NPs on the number of L. major promastigotes were investigated using counting assay. The MTT test was applied to determine the toxicity of Ag-NPs on promastigotes of L. major, as well as, macrophage cells. Then, to evaluate the anti-amastigotes effects of Ag-NPs, parasites within the macrophages were counted by light microscope. Furthermore, to determine the induced apoptosis and necrotic effects of Ag-NPs on promastigotes, flow cytometry method was employed using annexin staining. RESULTS: The effect of Ag-NPs on promastigotes and amastigotes of L. major was effective and has a reverse relationship with its concentration. According to the results of anti-amastigote assay, the IC50 value of this nanoparticle was estimated 2.35 ppm after 72h. Also, Ag-NPs caused Programmed Cell Death (PCD) in promastigotes of L. major and showed 60.18% of apoptosis. DISCUSSION: Based on the mentioned results, it can be concluded that Ag NPs has a beneficial effect on promastigote and amastigote forms of L. major in vitro. Hence, these nanoparticles could be applied as promising antileishmanial agents for treatment of Leishmania infections.


Assuntos
Antiprotozoários/farmacologia , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Extratos Vegetais/farmacologia , Prata/química , Zingiber officinale/química , Animais , Antiprotozoários/química , Apoptose , Técnicas In Vitro , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Nanopartículas Metálicas/química , Camundongos
5.
J Trace Elem Med Biol ; 56: 162-168, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473559

RESUMO

BACKGROUND: The pentavalent antimonial compounds are the first drug of choice for leishmania infection, but have several side effects that cause some restriction for use. Extension of nanoparticle use in biological research and proven effectiveness of manganese nanoparticles on fungi and bacteria, along with the lack of information about its antileishmanial effects, have motivated this study. Manganese can induce cell apoptosis by increasing FOXO3a-Bim/PUMA mRNA activation and activating of caspase-3 pathway. METHODS: This study was aimed to examine the efficacy of manganese oxide nanoparticles againstLeishmania major (MRHO/IR/75/ER) in vitro and in vivo. To evaluate the antileishmanial activity of NPs, light microscopic observation was used to determine the number of remaining parasites in each well. The MTT test was used to determine the cytotoxicity effects of Mn2O3 NPs against L. major promastigotes and macrophage cells. The effect of nanoparticles on cultured amastigotes under in vitro conditions was also investigated. The possible apoptosis of L. major by Mn2O3 NPs was evaluated with flow cytometry assay. Additionally, the preventive and therapeutic effects of Mn2O3 NPs in BALB/c mice following cutaneous L. major infection was tested. The effect of Mn2O3 NPs on promastigotes and amastigotes were proven by MTT assay and amastigote assay, respectively. RESULTS: The IC50 value of Mn2O3 NPs against L. major promastigotes and macrophages was 15 and 40 µg ml-1 respectively. The results of flow cytometry showed about 57% of the promastigotes were induced to apoptosis with Mn2O3 NPs. In in vivo studies, the size of the ulcers were significantly reduced, and the survival rate of the mice, in comparison with the control group, was increased. CONCLUSION: Mn2O3 NPs has a beneficial effect on L. major promastigotes in vitro and in vivo and could be considered as a candidate for the treatment of this infection.


Assuntos
Antiprotozoários/farmacologia , Leishmania major/efeitos dos fármacos , Compostos de Manganês/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura
6.
Prog Biomater ; 8(1): 43-50, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30859396

RESUMO

Candida albicans (C. albicans) belongs to the opportunistic fungal pathogens, which cause a wide spectrum of infections in immune-compromised patients. Graphene oxide (GO), a biocompatibility agent, has been reported to exhibit effective antimicrobial activity. In the present study, a graphene oxide/fluconazole (GO/Flu) compound was synthesized and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The antifungal activity of GO/Flu was examined against fluconazole-resistant C. albicans (ATCC 10231) compared to GO and Flu using the broth microdilution method, according to CLSI protocol. DNA fragmentation was assessed through the antifungal mechanism of GO/Flu. The release of Fluin PBS medium was measured. Moreover, the cytotoxicity effect of GO/Flu on SW480 cell line was evaluated. Indeed, adhesion ability of C. albicans-treated GO/Flu against SW480 cell line was assessed. The minimum inhibitory concentration (MIC) of GO, Flu, and GO/Flu was determined at 800 µg/mL, 16 µg/mL, and 400-9 µg/mL, respectively. Notably, GO/Flu exhibited an intense antifungal activity compared to GO and Flu. In addition, GO/Flu showed much less cell toxicity against SW480 cell line than GO and Flu (P < 0.05). The release determination of Flu in PBS (pH 7.4) medium was 72.42%. GO/Flu reduced the adhesion ability of C. albicans to SW480 cell line significantly. DNA fragmentation assay indicated that GO/Flu potentially degraded the DNA of C. albicans and caused a fungicidal influence. According to the findings, GO/Flu could enhance the antifungal activity against C.albicans through DNA fragmentation with low cytotoxicity effect.

7.
Cancer Nanotechnol ; 9(1): 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363777

RESUMO

BACKGROUND: Recently, some studies have focused on dendrimer nanopolymers as a magnetic resonance imaging (MRI) contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron-oxide nanoparticles which are applied in magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the investigation of fourth-generation dendrimer-coated iron-oxide nanoparticles (G4@IONPs) in magnetic hyperthermia and MRI. METHODS: IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine dendrimer. The cytotoxicity of G4@IONPs with different concentrations was assessed in a human breast cancer cell line (MCF7) and human fibroblast cell line (HDF1). Hemolysis and stability of G4@IONPs were investigated, and in addition, the interaction of these particles with MCF7 cells was assessed by Prussian blue staining. Heat generation and specific absorption rate (SAR) were calculated from measurement and simulation results at 200 and 300 kHz. MCF7 and HDF1 cells were incubated with G4@IONPs for 2 h and then put into the magnetic coil for 120 min. Relaxometry experiments were performed with different concentrations of G4@IONPs with T1- and T2-weighted MR images. RESULTS: The TEM results showed that G4@IONPs were 10 ± 4 nm. The in vitro toxicity assessments showed that synthesized nanoparticles had low toxicity. The viability of MCF7 cells incubated with G4@IONPs decreased significantly after magnetic hyperthermia. In addition, MR imaging revealed that G4@IONPs improved transverse relaxivity (r2) significantly. CONCLUSIONS: Our results encouraged the future application of G4@IONPs in magnetic hyperthermia and MR imaging.

8.
Int J Nanomedicine ; 13: 1483-1493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559777

RESUMO

BACKGROUND: The possibility of using a specific nanoparticle in nanomedicine highly depends on its biodistribution profile and biocompatibility. Due to growing demand for iron oxide nanoparticles (IONPs) and dendrimers in biomedical applications, this study was performed to assess the biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles (G4@IONPs). MATERIALS AND METHODS: IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine (PAMAM) dendrimer. To determine the biodistribution, 5 mg/mL G4@IONPs suspension was intraperitoneally injected into tumor-bearing BALB/c mice, and iron levels in blood and various organs, including the lung, liver, brain, heart, tumor, and kidney, were measured by inductively coupled plasma mass spectrometry (ICP-MS) at 4, 8, 12, and 24 h after injection. Also, to investigate the toxicity of G4@IONPs, different concentrations of G4@IONPs were injected into BALB/c mice, and blood, renal, and hepatic factors were measured. Furthermore, histopathological staining was performed to investigate the effect of G4@IONPs on the liver and kidney tissues. RESULTS: The results showed that the iron content was higher in the kidney, liver, and lung tissues 24 h after injection. Toxicity assessments revealed a significant increase in blood urea nitrogen (BUN) and direct bilirubin at the concentration of 10 mg/kg. Also, in this concentration, histopathological abnormalities were detected in liver tissue. CONCLUSION: Although more systematic studies are still required, our results encouraged the future investigations of G4@IONPs in biomedical applications.


Assuntos
Dendrímeros/química , Compostos Férricos/farmacocinética , Nanopartículas/química , Nanopartículas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Hidrodinâmica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Especificidade de Órgãos/efeitos dos fármacos , Tamanho da Partícula , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...